10V - Venture Curriculum - Science/8 Lessons weekly

Click here for <u>SoW access</u>

Year	2024 – 2025	2024 – 2025	2024 – 2025	2024 – 2025	2024 – 2025	2024 – 2025
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Topic: Chemistry 1 C3 Structure and bonding, C4 Chemical calculations, C5 Chemical changes	Topic: Chemistry 1 C5 Chemical changes conti, C6 Electrolysis, C7 Energy changes.	Topic: Physics 1 P1 Conservation and dissipation of energy, P2 Energy transfer by heating, P3 Energy resources.	Topic: Physics 1 P3 Energy resources conti, P4 Electric circuits, P5 Electricity in the home.	Topic: Physics 1 P5 Electricity in the home conti, P6 Molecules and matter, P7 Radioactivity.	Topic: Physics 2 P8 Forces in balance, P9 Motion, P10 Forces and motion.
	Suggested Key Questions: What are the various types of bonds? How does the type of bonding in carbon substances affect their properties? How do chemical formula's represent different types of chemical reactions? What are the different types of chemical reactions?	Suggested Key Questions: What do the terms exothermic/ endothermic mean? What are the different types of chemical reactions? Where is electrolysis used? How energies change during reactions?	Suggested Key Questions: What is conservation of energy? How can heat energy be transferred? How is demand for energy changing?	Suggested Key Questions: What are the different types of circuits and the differences between them? How can electricity be generated via a magnetic field?	Suggested Key Questions: What is static and how does it form? What are the different types of circuits and the differences between them? How can electricity be generated via a magnetic field?	Suggested Key Questions: How do forces interact? What do the different types of motion graphs show? How do forces affect motion?
	Key Skills and	<u>Key Skills and</u>	<u>Key Skills and</u>	<u>Key Skills and</u>	<u>Key Skills and</u>	<u>Key Skills and</u>
	Knowledge:	<u>Knowledge:</u>	<u>Knowledge:</u>	<u>Knowledge:</u>	<u>Knowledge:</u>	<u>Knowledge:</u>
	C3	C6	P1	P4	P6	P8
	Students have	Students are introduced	Students will continue to	Students will describe	Students will increase	students have compared
	developed their	to electrolysis. They will	develop their	the structure of an atom	their understanding of	vectors and scalars using
	understanding of the	build upon their	understanding of energy	in terms of charged	the concept of density	the examples of distance
	states of matter from	knowledge from	and energy transfer	particles and the	as a property of a	and displacement along
	KS3. They have built	<i>Chapter C3</i> to explain	begun in Key Stage 3.	process of charging by	material or object by	with the nature of forces.
	upon their	why ionic compounds	This includes	friction resulting in ions	measuring and	Representations of

understanding of the	can undergo electrolysis	development of an	and the transfer of	calculating the density	vectors using scale
particle model, using	when molten or in	energy stores model	electrons. This leads to	of solids and liquids.	diagrams led to
this to explain the	solution. They should	and the processes,	the concept of an	This leads to a	descriptions of the forces
energy transfers	also be able to explain	such as forces and	electric field	discussion of the states	acting in a wide variety of
involved when	the movement of	electrical currents,	surrounding charged	of matter, solid liquid	situations and the
substances change	particles during	through which energy	objects causing	and gas, the properties	identification of Newton's
state.	electrolysis, and the	can be transferred.	attractive or repulsive	of matter which is in	third law. The concept of
	reactions that occur at	Students will learn how	forces between them.	these states and the	balanced and unbalanced
Students have also	the electrodes.	to measure the work		changes which occur as	forces was used to
learnt about the		done by a force acting	The students will then	a material changes from	determine the behaviour
different types of	Students will then apply	over a distance and	describe electric circuits	one state to another.	of objects and the
bonding in substances.	their understanding of	how this concept can be	and the components	The changes in the	application of Newton's
They should know that	electrolysis to the	used to analyse energy	used to construct them	properties of matter	first law of motion. Higher
covalent bonding is the	extraction of aluminium,	changes in gravitational	using the concept of	were used to introduce	tier students have
sharing of one or more	and learn how to	stores, through lifting	current as the rate of	the kinetic theory and to	produced free body
pairs of electrons	investigate the	and falling, and elastic	charge flow through	analyse the changes in	diagrams demonstrating
between non-metal	electrolysis of a	potential stores during	components due to a	temperature occurring	the forces acting on an
atoms; ionic bonding	solution. They should	stretching using the	potential difference	during heating and the	isolated object. The
involves a metal and	be able to predict the	relevant mathematical	between points in the	concept of latent heat.	GCSE Physics students
non-metal atom, with	products of electrolysis	relationships. The	circuit. Resistance was	-	have analysed the
the metal atom losing	and higher-tier students	conservation of energy	introduced and the	The students move on	rotational effects of forces
one or more electrons	should be able to write	through changes in the	cause of a heating	to discuss the concept	through the idea of
and the non-metal atom	balanced half	gravitational, kinetic,	effect and	of internal energy in	moments using both a
gaining one or more	equations.	and elastic stores will	corresponding energy	more detail; analysing	mathematical approach
electron; and metallic	-	also be discussed.	transfer. Students will	the behaviour of	and an investigation into
bonding involves a	C7	They will consider the	investigate the factors	particles in a solid,	the turning effect. These
delocalised sea of	Students will learn	dissipation of energy	affecting the resistance	liquid or gas as the	students also examined
electrons surrounding	about the energy	during transfers such as	of a wire and the	temperature changed.	the application of levers
the positive metal ions.	transfers that occur	those caused by friction	corresponding current-	Students will describe	and gears in increasing
	during chemical	or electrical heating,	potential difference	latent heat of fusion and	the size of the available
Students should have	reactions They should	leading to the idea of	graphs. Further	vaporisation	force or the movement of
also learnt how the	understand that an	efficiency during	investigations of the	mathematically,	an object. While all
bonding of a substance	exothermic reaction	different energy	components and	calculating energy	students determined the
affects its bulk	transfers	changes and its	analysis of the current-	changes during the	centre of mass of an
properties. They should	energy from the system	calculation. The concept	potential difference	appropriate phase	object experimentally only
be able to describe the	to the surroundings, and	of efficiency will then be	graphs will show ohmic	changes and attempted	the GCSE Physics
difference in bonding	an endothermic reaction	applied to the selection	and non-ohmic	to measure the latent	students have gone
and properties of giant	transfers energy from	of electrical devices.	behaviours for wires,	heat of fusion for ice	further with the idea of
ionic structures, simple	the surroundings to the	Finally, the students will	filaments, and diodes.	using electrical heating.	equilibrium and have
covalent molecules, and	system. This is a key	learn about the rate of	The relationship		used it to analyse the
giant covalent	concept	energy transfer in	between the resistance	The students will	equilibrium conditions in
structures (including	that students should be	different systems	of a thermistor and its	analyse the	seesaws, and other
different arrangements	confident with. Students	through the through the	temperature along with	relationships between	objects, mathematically
of carbon). Students	should be able to	concept of power and	the relationship	the pressure and	using a rigorous
should understand that	interpret experimental	how this power rating	between the resistance	temperature of a fixed	approach. All higher tier
covalent, metallic, and	data to identify if a	can be used to	of a light-dependent	mass of gas,	students have analysed
ionic bonding is strong,	reaction is exothermic	determine total energy	resistor and light level	determining that the	the forces acting on an
but that it is how the	or endothermic and	change over time.	have been investigated.	pressure is proportional	object in additional depth
particles interact	should	-	÷	to the absolute	using a parallelogram of
(intermolecular forces)		P2		temperature. They	forces approach to

_						
	that determines	be able to describe	Students will develop	Finally, the students	described the cause of	determine the resultant
	properties such as	some uses of	their understanding of	investigate and analyse	pressure in terms of	force or a 'missing force'
	melting point, boiling	exothermic and	the heating and cooling	a range of series and	random particle	when an object is in
	point, and electrical	endothermic reactions.	processes, which	parallel circuits	behaviour and impact	equilibrium. In addition.
	conductivity.		transfer energy within a	describing the path of	between the particles	the students have
	· · · · · · · · · · · · · · · · · · ·	Students will further	material or from one	current at junctions the	and the container	resolved forces at right
	C1	develop their qualitative	object to another. They	notential difference	explaining the changes	angles to analyse
	C4	understanding of the	will investigate thermal	across branches and	in pressure in terms of	systems and determine if
	Students will build upon	energy transfers in a	conductivity and the	components and the	changes in the motion	a system is in equilibrium
	their understanding of	reaction into a	differences in the	offect on registence of	of the gas particles as	a system is in equilibrium.
	the structure of atoms				of the terms are turn	
	and sub-atomic	quantitative	processes of thermal	series and parallel		P9
	particles to understand	understanding. They		branches.	decleases.	students have analysed
	relative atomic mass	should be confident with	and non-metals.			the motion of objects in
	and relative formula	sketching and		P5	Finally, the GCSE	depth starting from a
	mass. Students should	interpreting reaction	The GCSE Physics	Students will compare	Physics students will	recap of the concept of
	be able to use relative	profile diagrams and	students will describe	direct and alternating	investigate the	speed and this
	atomic masses to	higher-tier students	the transfer of energy	currents in terms of	relationship between	relationship to distance
	calculate relative	should be able to use	between objects	current direction. An	gas pressure and	travelled and
	formula masses of	bond energies to	through absorption and	oscilloscope will be	volume, determining	time taken. The
	compounds.	calculate overall energy	emission of infra-red	used to analyse	that as the pressure	representation of motion
		changes for a	radiation as a part of the	changes in the potential	increases the volume of	using distance-time
	For higher-tier students.	reaction, identifying if it	electromagnetic	difference causing the	the gas is decreased or	graphs representing
	this was then related to	is exothermic or	spectrum. This includes	current and to measure	vice versa. Noting that	single and multiple
	the mole and	endothermic.	the factors that affect	the peak voltage period	this was a linear	objects has been
	Avogadro's constant		the rate of this transfer	and frequency of a low	relationship led to	analysed to give detailed
	and the relevant	Students will also apply	such as temperature	voltage sinusoidal a c	Bovle's law and	descriptions of the
	calculations introduced	their understanding of	and surface colour.	signal	calculations based on it.	movement of the objects
	Students should be able	the reactivity series and	Higher tier GCSE	Signal.	The behaviour of the	movement of the objects.
	to use the equation	electrolvsis to chemical	Physics students will	The students will	gas during compression	The students have
	number of moles -	cells and fuel cells.	apply this knowledge to	describe the LIK mains	was again explained	defined acceleration in
	mathematical mathematical mathematical mathematical $(a) / A$ and use		the concept of the	supply and the wires	using a particle model.	torms of changes in
	malos to balanco		Greenhouse Effect and	supply and the wires	Higher level students	velocity before analysing
	moles to balance		its relationship to the	the Netional Crid and	also note that work was	it graphically and
	symbol equations and		wavelength of the	the high voltages	done during the	n graphically and
			radiation penetrating or	the high voltages	compression of a das	tion students have also
	masses.		being absorbed by	associated with it.	and this can have a	tier students have also
	Chudanta will apply their		Farth's atmosphere	Understanding of mains	heating effect	outlined
	Students will apply their		Earth o atmosphere.	function of the neutral	fielding effect.	circular motion in terms of
	understanding of		All students will analyse	function of the neutral	DZ	constant acceleration but
	relative atomic mass,		the changes in	and earth wires, has	F1 Otudente utili deservites	with constant speed. All
	relative formula mass,		temperature when a	been applied to three	Students will describe	students have then
	and moles to		material is beated	pin plugs and a simple	now the structure of the	investigated acceleration
	concentrations. All		loading to the	ring-main. The choice of	nucleus was discovered	caused by an unbalanced
	students should be able		experimental	materials used for	by the radiation emitted	force on
	to carry out calculations		determination of apositio	construction of mains	during nuclear decay	ramp, linking acceleration
	with concentrations in		boot opposity along with	circuits such as wires,	and how	to the gradient of a line on
	g/dm³.		near capacity along with	cables and plugs was	experimentation and	a velocity-time graph.
				discussed along with	developments in our	
	C5		calculations. The	the need for a fuse to	understanding of	Students have continued
	students will revise and		concept of specific heat	prevent overheating and	subatomic particles	to analyse graphs
	develop their		capacity will then be		have driven to changes	representing motion by

understanding of the	used to explain the	insulation for protection	in the model used to	looking at the area
reactivity series from	choice of materials used	from short circuits.	describe the atom from	beneath the line on a
KS3. They will study the	in heating systems.		the plum pudding	velocity-time graph and
reactions of the metals		Students will	model, through to the	its relationship to the
potassium, sodium,	Finally, the reduction of	mathematically analyse	Rutherford model and	distance
lithium, calcium,	energy transfers to the	circuits to determine the	then Bohr model.	travelled by an object.
magnesium, zinc, iron,	surroundings by	power supplied by a		Students have used the
and copper with water	insulation. such as loft	current and the	The students will	gradient of a distance-
and acids and should	or cavity wall insulation.	relationship between	describe the changes in	time graph to determine
be able to recall and	will be studied and	power and the	the nucleus which occur	the speed of an object. In
describe these	applied to the context of	resistance of	during alpha, beta, and	addition, higher tier
reactions. They will	reducing energy loss in	components. This will	gamma decay along	students have used
apply their	buildings to reduce	be linked back to the	with neutron emission in	the tangent of a line on a
understanding of the	heating costs including	charge transfer in a	terms of atomic (proton)	distance-time graph to
reactivity series to	the idea prioritising	circuit and the concept	number and mass	determine the speed All
displacement reactions	home improvements in	of electrical beating as	number using the	students have then
and the extraction of	line with payback time	charges move within or	appropriate nuclear	applied these techniques
metals as well as	inte with payback tille.	through components	notation for jectones	to analyse a range of
introducing higher-tier	D 2	through components.	The properties of alpha	graphs to extract all of
students to the		Finally, students will	beta and gamma	the possible information
concents of evidation	Students will examine	consider the importance	radiation have been	from thom
and reduction as the	the different sources of	of officionov within	domonstrated loading to	nom mem.
loss and gain of	energy that are used to	mains powered	a discussion of their use	D10
oloctrone respectively	generate electricity or	oloctrical dovices linking	in thickness monitoring	P10
electrons respectively.	provide heating for	this concert back to	in the sofety	Students began this
Studente will alee learn	homes. They will	this concept back to	and then the salety	chapter by
Students will also learn	consider the effect of	energy transfer by a	measures required	experimentally
about saits and now	the production and use	current and to the	when using radioactive	determining the
they are prepared,	of biofuels on the	simplified system of	materials.	relationships between
including from metals	environment along with	energy efficiency ratings	Other designs ill the second second	a force acting on an
and acids, acids and	the concept of carbon-	used when considering	Students will then move	a loice acting on an
bases, and acids and	neutrality before	the purchase of an	on to discuss the	object and the
carbonates. Students	outlining the use of	appliance.	concepts of activity,	acceleration, and the
should be able to	nuclear power in		count rate, and the	mass of the
prepare a pure, dry	comparison to fossil		patterns in radioactive	object and the
sample of a salt from an	fuels.		decay that explain half-	acceleration. The
insoluble metal oxide or			life and the associated	results led of the
carbonate as part of the	Student will describe		graphs despite the	formulation for
required practical.	and evaluate renewable		random nature of	Newton's second law
	resources such as wave		individual decays.	of motion and ite
Finally, students will	power, wind power,		Higner tier students will	
learn about the pH	hydroelectricity and tidal		perform calculations	application. Higher-tier
scale. Higher-tier	technology and how		involving the	students have also
students should be able	these can be used to		relationship between	defined the
to explain how pH	generate electricity in		the initial activity,	inertial mass of an
relates to H+(aq) ion	specific locations. In		current activity, and	obiect.
concentration and the	addition, students will		half-life.	,
difference between	describe the operation			The students have
strong and weak acids.	of geothermal power		GCSE Physics students	then compered the
	stations and their links		will discuss the	then compared the
	to radioactive decay.		application of	concepts of mass and
-	,			

Links to	Denobmork 2	Banchmark 2	The principles of solar cells and both small- scale and large-scale solar heating systems have been outlined. The students will compare all of the energy resources in terms of local environmental impacts such as pollution and global environment impacts such as acid rain and contribution to global warming. Finally, the students will describe how the different resources could be applied in combination to meet the base load and changing energy demands throughout a single day before finally considering the capital costs and operating cost over the operational lifetime of the resource.	Denobmark 2	radioactivity to medical tracers within the body releasing gamma rays detected by gamma cameras and evaluated in terms of risks and benefits. These students will also look at both nuclear fission and fusion in relation to nuclear power. Chain reactions involving fissionable isotopes have been described along with an outline of a fission reactor, its fuel rods, control rods, and physical construction. The dangers associated with nuclear fission, in particular accidents and the handling of waste has been debated. Nuclear fusion reactions in stars was discussed and compared to the difficulties of producing stable fission reactions on Earth.	weight, linking then through the idea of a gravitational field before looking at the forces acting on an object as it falls through a fluid and the resulting terminal velocity. The forces acting during stopping a car have been analysed; identifying two phases of the motion; thinking and braking distance and the effects of a wide range of factors on both of these distances. Students have calculated the size of the accelerations experienced during braking with higher tier students deriving an appropriate equation involving the stopping distance. Finally, all of the students have investigated the effect of forces on the stretching of a range of materials identifying both linear and non- linear relationships between the force and extension. Students have applied Hook's law as appropriate and.
Gatsby Benchmarks:	Benchmark 3 – Addressing the needs	Benchmark 3 – Addressing the needs	Benchmark 2, – Learning from the Career and Labor	Benchmark 2, – Learning from the Career and Labor	Benchmark 2, – Learning from the Career and Labor	Benchmark 2, – Learning from the Career and Labor

of the student and * -	of the student and * -	Market information.	Market information.	Market information.	Market information.
Personal Guidance	Personal Guidance	Benchmark 3 –	Benchmark 3 –	Benchmark 3 –	Benchmark 3 –
Benchmark 4 –	Benchmark 4 –	Addressing the needs	Addressing the needs	Addressing the needs	Addressing the needs
Linking Curriculum to	Linking Curriculum to	of the student and * -	of the student and * -	of the student and * -	of the student and * -
learning	learning	Personal Guidance	Personal Guidance	Personal Guidance	Personal Guidance
Students to consider what skills are needed to be a forensic scientist/ chemical engineer lead onto looking at what skills are needed for different roles they are interested in and what qualifications.	Students to consider what skills are needed to be a forensic scientist/ chemical engineer lead onto looking at what skills are needed for different roles they are interested in and what qualifications.	Encounters with employers and employees Students to consider what skills are needed to access the opportunities they are interested in. Research.	Students to consider what qualifications are needed to access the opportunities they are interested in. Research.	Students begin consider how technology may shape the job market.	Senchmark 4 – Linking Curriculum to learning Benchmark 8 – Personal Guidance Students to consider what skills are needed to access the opportunities they are interested in. Going into work places/remote visits. Research.